A part toolbox to tune genetic expression in Bacillus subtilis.

Sarah Guiziou^{*†1}, Vincent Sauveplane², Hung-Ju Chang¹, Caroline Clerté¹, Nathalie Declerck¹, Matthieu Jules², and Jerome Bonnet^{‡1}

¹Centre de Biochimie Structurale (CBS) – INSERM U1054, CNRS UMR5048, Universités Montpellier I et II – 29, rue de Navacelles 34090 MONTPELLIER, France

²MICrobiologie de l'ALImentation au Service de la Santé humaine (MICALIS) – AgroParisTech, Institut national de la recherche agronomique (INRA) : UMR1319 – F-78350 JOUY-EN-JOSAS, France

Abstract

Libraries of well-characterised components regulating gene expression levels have become essential to many synthetic biology applications. While widely available for the Gramnegative model bacterium *Escherichia coli*, such collections are lacking for the Gram-positive model *Bacillus subtilis*, a key organism for basic research and biotechnological applications. Here we engineered a genetic toolbox comprising libraries of promoters, ribosome binding sites (RBS), and protein degradation tags to precisely tune gene expression in *B. subtilis*. We first designed a modular Expression Operating Unit (EOU), which facilitates parts assembly and modifications, and provides a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of *B. subtilis* and efficient RBSs from which we engineered three promoters and three RBSs libraries exhibiting _~14,000-fold dynamic range in gene expression levels (protein concentration). We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library.

Our complete promoter and RBS library comprising over 150 constructs enables GFP concentration to be tuned over five orders of magnitude, from 0.05 μ M to 900 μ M. This toolbox of regulatory components will support many research and engineering applications in *B. subtilis.*

Keywords: Bacillus subtilis, gene expression, promoters, ribosome binding sites, degradation tags, standardisation

*Speaker

 $^{\ ^{\}dagger} Corresponding \ author: \ guiziou@cbs.cnrs.fr$

[‡]Corresponding author: bonnet@cbs.cnrs.fr