A green marine pico-eukaryote to unveil VLC-PUFA pathways
Florence Corellou  1, *@  , Charlotte Degraeve-Guilbault  1@  , Claire Brehelin  1@  , Glawdys Marie-Luce  1@  , Frédéric Domergue  2@  , Jérôme Joubès  3@  , Juliette Jouhet  3@  
1 : Laboratoire de Biogenèse Membranaire - LBM (Bordeaux, France)  (LBM)
Centre National de la Recherche Scientifique - CNRS, Université de Bordeaux
71 Avenue Edouard Bourlaux, 33140 Villenave d'Ornon -  France
2 : Plateforme Métabolome Bordeaux  (PMB-MetaboHUB)  -  Website
CNRS : UMR5200
Centre INRA de Bordeaux-Aquitaine, IBVM, CS 20032, 33 140 Villenave d'Ornon -  France
3 : Laboratoire de physiologie cellulaire végétale  (LPCV)  -  Website
CEA, Université Joseph Fourier - Grenoble I, Institut national de la recherche agronomique (INRA) : USC1359, CNRS : UMR5168
17 Rue des martyrs 38054 GRENOBLE CEDEX 9 -  France
* : Corresponding author

Marine microalgae are the primary producers of Very Long–Chain Polyunsaturated Fatty Acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which are transferred through the food web to consumers such as fishes. VLC-PUFAs are essential for animal reproduction, development and are provided to human in the form of ‘fish-oils'. Depletion of marine natural resources and increasing fish farming exert a pressing need to find a sustainable source of VLC-PUFAs. No single algal strain accumulates both EPA and DHA in triacylglycerols (oils). Synthetic biology and/or metabolic engineering are therefore required to create a new resource of highly unsaturated-oils. Heterologous reconstitution of LC-PUFA biosynthesis requires increasing our knowledge of LC-PUFA pathways in microalgae in order to conduct a rational iterative approach to overcome metabolic bottlenecks.

Ostreococcus tauri is the only model system for marine green microalgae currently available. This pico-eukaryote displays unique features of compactness at the cellular and genomic level and produces DHA. High quality sequencing data and availability of a complete genomic tool-box make this organism an ideal model to study VLC-PUFA biosynthetic pathways. We conducted the complete characterization of the Ostreococcus glycerolipidome and implemented physiological scenarii to help the identification of key enzymes for LC-PUFA and TAG biosynthesis. Our results unveiled unique PUFAs hallmarks in structural lipids, high-light biosynthetic pathways used for structural glycerolipids and indicated that Ostreococcus produces high amount of unsaturated TAG under Nitrogen starvation. This work represents a strong basis for further characterization of Ostreococcus FA-desaturases in homologous and heterologous systems. 


Online user: 1